Stainless steel reveals an anomaly in thermal expansion behavior of severely deformed materials

نویسندگان

چکیده

Thermal expansion of materials is fundamental practical relevance and arises from an interplay several material properties. For nanocrystalline materials, accurate measurements thermal based on high-precision reference dilatometry allow inferring phenomena taking place at internal interfaces such as vacancy annihilation grain boundaries. Here we report obtained for a severely deformed 316L austenitic steel, showing anomaly in difference curves which attribute to the exceptionally high density stacking faults. On basis ab intio simulations evidence that peculiar magnetic state steel causes faults expand more than matrix. So far, effect has only been observed this particular but expect other could exhibit even pronounced anomaly.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterisation of severely deformed austenitic stainless steel wire

The microstructure of 8 mm diameter wire produced by the severe deformation of 316L austenitic stainless steel has been examined using TEM and X-ray diffraction. The deformation imparted amounts to a true strain of 6.3. Data from previous studies on strain induced transformation of this steel have been combined with new results to show that true strains .2 are required in order to observe mecha...

متن کامل

Precession Electron Diffraction based TEM Studies of Microstructure Evolution in Severely Plastically Deformed Austenitic Stainless Steel

Austenitic stainless steels offer good property combinations for structural component applications in demanding and aggressive environments, including nuclear power plants, where irradiation assisted degradation failures have been reported [1]. Enhanced irradiation tolerance has been reported for materials containing a high density of internal interfaces that act as point defect annihilation or...

متن کامل

Ultra-Fast Diffusion in Severely Deformed Materials

1. Introduction Severe plastic deformation (SPD) is nowadays used to produce sizeable amounts of bulk nanocrystalline materials, which renders them suitable for different innovative applications, owing to favourable combinations of high mechanical strength and enhanced ductility they offer. Enhanced grain boundary diffusion is largely responsible for the resulting property combinations. SPD pro...

متن کامل

Isothermal Recrystallization Behavior of Cold-deformed Martensite in an Ultra-low-carbon Microalloyed Steel

One of the most promising ways to produce a grain-refined microstructure in some steel materials is the thermomechanical processing route of subcritical recrystallization annealing of a cold-deformed martensite structure. In the present study, the microstructural evolutions and the associated recrystallization kinetics under various subcritical annealing heat treatment conditions are explored i...

متن کامل

Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass rat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Materials

سال: 2021

ISSN: ['2476-0455', '2475-9953']

DOI: https://doi.org/10.1103/physrevmaterials.5.113609